


ALGEBRA

Algebraic Operations

a + b
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=

a
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+

b

c
; note:

a

b + c
is not equal to

a

b
+

a

c
a

b
+

c

d
=

ad + bc

bd
a/b

c/d
=

a

b
· d

c
=

ad

bc
; special cases:

a

c/d
=

ad

c
and

a/b

c
=

a

bc

If a �= 0, then 0/a = 0; expressions a/0 and 0/0 are not defined (not real numbers)

Quadratic Formula

The solutions of ax2 + bx + c = 0 are x =
−b ± √

b2 − 4ac

2a

Completing the Square

x2 + ax =
(

x +
a

2

)2 −
(a

2

)2

Powers of a Binomial

(a + b)2 = a2 + 2ab + b2

(a − b)2 = a2 − 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a − b)3 = a3 − 3a2b + 3ab2 − b3

Factoring Polynomials

a2 − b2 = (a − b)(a + b)

a2 + b2 does not factor (into real factors)

a3 − b3 = (a − b)(a2 + ab + b2)

a3 + b3 = (a + b)(a2 − ab + b2)

Rules for Inequalities [the sign < (>) can be replaced by ≤ (≥)]

If a < b and b < c then a < c

If a < b then a + c < b + c and a − c < b − c

If a < b and c > 0 then ac < bc; if a < b and c < 0 then ac > bc

If 0 < a < b then 1/a > 1/b

Absolute Value and Square Root [assume that a ≥ 0]
√

x2 = |x|
|x| = a is equivalent to x = −a or x = a

|x| > a is equivalent to x < −a or x > a

|x| < a is equivalent to −a < x < a

Copyright 2015 Nelson Education Ltd. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Nelson Education reserves the right to remove additional content at any time if subsequent rights restrictions require it.



x2 = a is equivalent to x = −√
a or x =

√
a

x2 > a is equivalent to x < −√
a or x >

√
a
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a < x <

√
a

Exponents and Radicals
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1
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aman = am+n am
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n = amn

anbn = (ab)n an
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b
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a1/n = n
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am/n = n
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n
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n
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ab = n
√

a
n
√

b n

√
a

b
=

n
√
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n
√

b

Factorials

0! = 1 1! = 1

n! = 1 · 2 · 3 · · · (n − 1) · n

GEOMETRY

Area (A), Circumference (C), Surface Area (S), and Volume (V)

Triangle, base b and height h: A =
1

2
bh

Rectangle, base b and height h: A = bh; C = 2b + 2h

b

h

b

h

Circle, radius r: A = πr2; C = 2πr

Sector of a circle, radius r and angle θ (in radians): A =
1

2
r2θ ; C = rθ

r

r
θ

Sphere, radius r: V =
4

3
πr3; S = 4πr2

Cylinder, base radius r and height h: V = πr2h

r
h

r
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Rectangular box with dimensions a, b, c: V = abc; S = 2ab + 2ac + 2bc

Cube of side a: V = a3; S = 6a2

a

c
b

a

a
a

Analytic Geometry

Distance between points x1 and x2 on a number line: d = |x2 − x1|
Distance between points (x1, y1) and (x2, y2) in a plane: d =

√
(x2 − x1)2 + (y2 − y1)2

Midpoint of a line segment joining (x1, y1) and (x2, y2): M =
(x1 + x2

2
,

y1 + y2

2

)

Slope of a line through points (x1, y1) and (x2, y2): m =
y2 − y1

x2 − x1

Equation of a line through (x1, y1) of slope m (point-slope equation): y − y1 = m(x − x1)

Line of slope m and y-intercept b (slope-intercept equation): y = mx + b

Equation of a circle of radius r centred at the origin: x2 + y2 = r2

TRIGONOMETRIC RATIOS AND TRIGONOMETRIC FUNCTIONS

π radians = 180o; i.e., 1 radian =
180o

π
and 1o =

π

180
radians

Right-angle triangle

sin θ =
opposite

hypotenuse
csc θ =

1

sin θ
=

hypotenuse

opposite

cos θ =
adjacent

hypotenuse
secθ =

1

cos θ
=

hypotenuse

adjacent

tan θ =
opposite

adjacent
cot θ =

1

tan θ
=

adjacent

opposite

x

y

0

r
θ

x

y

adjacent
θ

opposite
hypotenuse

General angles

r =
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x2 + y2

sin θ =
y

r
csc θ =

1

sin θ
=

r

y

cos θ =
x

r
secθ =

1

cos θ
=
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x

tan θ =
y

x
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tan θ
=

x

y
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Preface

Calculus for the Life Sciences: Modelling the Dynamics of Life is truly a calculus book
for life sciences students.

This book covers limits, continuity, derivatives, integrals, and differential equa-
tions, which are standard topics in introductory calculus courses in universities. All
concepts, definitions, and theorems are explained in detail and illustrated in a number
of fully solved examples. A variety of approaches—algebraic, geometric, numerical,
and verbal—facilitate the understanding of the material and will be of great help to
any students who may read the book on their own.

As new mathematics concepts and ideas are introduced, applications illustrating
their use are presented. Questions arising from life sciences situations are employed
to motivate the construction of several mathematical objects (such as derivatives and
integrals). A narrative introduces the context of an application and shows its relevance
and importance in life sciences.

The major purpose of this book is to build quantitative skills and to introduce its
readers to the insights that mathematics can provide into all branches of life
sciences.

Although the importance of quantitative skills in the life sciences is a widely
accepted fact, realities—in many cases—conceal their vital role. In part, this is because
mathematics tends to be hidden, working in the background: once something has
been figured out and becomes a standard, the mathematics that was used is no longer
needed, as practitioners use software, diagrams, and charts instead. For instance, doc-
tors and nurses do not look at half-life information to calculate a dosage every time
they need to administer a medication. An ultrasound technician can “calculate” the
volume of blood in a patient’s heart chamber by selecting a few items from the pull-
down menus in a computer program, completely unaware of the fairly sophisticated
mathematics (calculation of volume by approximate integration) used to design the
software.

As for the insights, a simple mathematical model explains why the heart of a
mouse beats about 15 times as fast as the heart of an elephant. With mathematical
formulas that describe human growth, we can understand why body mass index does
not give reliable estimates of body fat in children and tall people.

Furthermore, mathematics has the power to reveal otherwise invisible worlds in
the vast universe of numerical data that has been gathered about almost every single
phenomenon related to life. Joel E. Cohen writes:1

For example, computed tomography can reveal a cross-section of a human head from
the density of X-ray beams without ever opening the head, by using the Radon trans-
form to infer the densities of materials at each location within the head. Charles
Darwin was right when he wrote that people with an understanding “of the great
leading principles of mathematics . . . seem to have an extra sense.” Today’s biolo-
gists increasingly recognize that appropriate mathematics can help interpret any kind
of data.

1 J. E. Cohen. Mathematics is biology’s next microscope, only better; biology is mathematics’ next
physics, only better. PLoS Biol 2(12): e439, 2004. Published online December 14, 2004. doi:
10.1371/journal.pbio.0020439. PMCID: PMC535574.
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x Preface

Although a great deal of biology can be done without mathematics, the powerful
new technologies that are transforming fields of biology—from genetics to physiology
to ecology—are increasingly quantitative, as are many questions at the frontiers of
knowledge. Along with genetics, mathematics is one of two unifying factors in the life
sciences. And as biology becomes more important in society, mathematical literacy
becomes as vital for an informed citizen as it is for a researcher.

Modelling and the Dynamics of Life
The goal of this book is to teach the mathematical ideas that will help us understand
various phenomena in life sciences. These are the same ideas that researchers use in
their work, as well as in collaborations with colleagues engaged in more empirical
activities. They are not specific techniques, such as differentiation or integration by
parts, but rather they revolve around building mathematical models.

A mathematical model is that crucial link between a life sciences phenomenon
and its description in terms of mathematical objects. We will gain the skills needed to
construct a model, make sure it works, and understand what it implies—we will learn
how to translate appropriate aspects of a life sciences problem and its assumptions
into formulas, equations, and diagrams; how to solve the equations involved; and how
to interpret the results in terms of the original problem. For instance:

■ We build several models in an attempt to predict what the population of Canada
will be in the near (and not so near) future. In each case, we critically examine
the assumptions that we made, as well as comment on the results of the model.

■ Regular clinical breast examinations are key to early detection of breast cancer.
Do these exams suffice, or should one also consider mammography? By using
an exponential model to understand how cancer cells grow, we conclude that in
some cases mammography gives a significant lead time over clinical
examination in early detection of cancer.

■ To study the interaction between populations, we take a detailed look at the
predator-prey model, which could be used, for instance, to describe the
interaction between foxes and rabbits in an ecosystem. In addition, a model of
selection will help us understand the behaviour of two different bacterial
cultures sharing the same space and resources.

■ We investigate limited population growth models, such as the logistic model
and the Allee effect.

■ Using discrete-time dynamical systems, we build our understanding of aspects
of the consumption and absorption of drugs such as alcohol and caffeine.

Content
The organization and presentation of the material in this book mirror the relationship
between mathematics and the life sciences. Mathematics enables us to describe, exp-
lain, and understand biological processes. In turn, the questions life scientists would
like to know the answers to stimulate the development of mathematical ideas and tech-
niques.

A quick overview of the content of the book is contained in the following table:
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Preface xi

An Overview of the Book

Chapter 1
Introduction

We illustrate how math is used in the life sciences (Section 1.1); introduce the idea of a mathematical model
(Section 1.2); review basics about functions, such as graphs and transformations of graphs, composition, and
inverse functions; and use the opportunity to discuss elementary models (Sections 1.3 and 1.4). In the final
section, we talk about building blocks of math (definitions, theorems), math reasoning patterns (how to think of
an implication), and interpreting math results in the context of applications in life sciences.

Chapter 2
Modelling
Using
Elementary
Functions

We review properties of linear, power, and transcendental functions, and, at the same time, introduce important
models (many of which we revisit as we learn more math). For instance, using power functions, we study
heartbeat frequency in mammals and derive an important relation between the size of an animal and the size of
its body cover, we predict the changes in Canadian population, we study cell growth using exponential models,
and we describe various oscillations and learn how forensic technicians use blood splatters to identify the events
that led to their formation.

Chapter 3
Discrete-Time
Dynamical
Systems

We study algebraic and geometric properties of discrete-time dynamical systems (recurrence relations) in Sec-
tions 3.1 and 3.2. We discuss a whole spectrum of models, including limited population and consumption of
coffee and alcohol (Section 3.3) and a nonlinear population model of selection (Section 3.4). As we learn more
math, we revisit these models and enrich our understanding. The chapter closes with a more advanced model on
gas exchange in the lung (Section 3.5).

Chapter 4
Limits,
Continuity,
and Derivatives

This chapter contains an in-depth discussion of major calculus concepts: limits (Sections 4.2 and 4.3), continuity
(Section 4.4), and derivatives (Sections 4.1 and 4.5). With applications never far from sight, we introduce several
absorption functions (Section 4.3). In order to understand how practitioners reason and speak about absorption,
we compare these functions in terms of how quickly they approach zero or infinity.

Chapter 5
Working with
Derivatives

In this fairly technical chapter, we cover all differentiation rules (Sections 5.1 to 5.4), including implicit and
logarithmic differentiation and related rates (Section 5.5). Besides traditional questions (found in all calculus
texts), the reader will find exciting related rates situations from biology. We learn how to calculate higher-order
derivatives and use them to study graphs (Section 5.6) and build various approximations of functions, including
Taylor polynomials (Section 5.7).

Chapter 6
Applications of
Derivatives

This chapter offers a wide range of applications of derivatives: computing absolute and relative extreme values
(Section 6.1), identifying leading behaviour and calculating limits using L’Hôpital’s rule (Section 6.4), drawing
graphs of functions (Section 6.5), and approximating solutions of equations using Newton’s method (Section
6.6). To illustrate how optimization works, we study the strength of bones and the feeding patterns of animals and
analyze the way bees build their honeycombs (Section 6.2). Section 6.3 makes important connections between
continuity and differentiability. The derivatives help us understand the stability of a dynamical system (Section
6.7) as well as gain an insight into complex dynamic behaviour such as chaos (Section 6.8). An advanced study
of breathing patterns (Section 6.9) can be downloaded from the textbook’s companion website.

Chapter 7
Integrals and
Applications

We introduce differential equations, an important ingredient in many mathematical models in biology (Section
7.1), as motivation for a need to reverse differentiation. We proceed as usual: antiderivatives (Section 7.2) and
area and the definite integral (Section 7.3) meet in the statement of the Fundamental Theorem of Calculus (Sec-
tion 7.4). We work through standard integration methods (Section 7.5) and discuss improper integrals (Section
7.7). We go through a wide range of applications in Section 7.6 (area, volume, length, mass, etc.), including
estimating the surface area of Lake Ontario and the volume of a heart chamber.

Chapter 8
Differential
Equations

The focus of this chapter is on autonomous differential equations and their applications. We introduce and
investigate several important models, such as the logistic model, the Allee effect, the law of cooling, diffusion,
and the continuous model of selection (Section 8.1). We develop tools for a qualitative analysis: equilibria
and display (Section 8.2), stability (Section 8.3), and then solve some equations using separation of variables
(Section 8.4). The remaining sections are devoted to models based on systems of differential equations, such
as predator–prey and competition (Section 8.5), and their analysis using phase-plane techniques (Sections 8.6
and 8.7). A more challenging section on the dynamics of a neuron (Section 8.8) can be downloaded from the
textbook’s companion website.
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xii Preface

Presentation
Easy-to-read and easy-to-follow narratives, carefully drawn pictures and diagrams,
clear explanations, large numbers of fully solved examples, and broad-spectrum appli-
cations make the material suitable for a variety of audiences with a wide range of
interests and backgrounds.

In creating this book, we were guided by several important principles:

■ Convey excitement about the material.

■ Convey the relevance and importance of mathematics and its applications.

■ Use a variety of approaches—algebraic, numeric, geometric, and verbal.

■ Motivate the introduction of new mathematical objects, concepts, and
algorithms.

■ Review background material so it does not become an obstacle in explaining
advanced material.

■ Provide more examples and illustrations for more difficult material.

■ Revisit important concepts as often as possible, in a variety of contexts.

■ Revisit applications and enrich models as new mathematics ideas are
introduced.

Conceptual Understanding and Mathematical Thinking
This text provides the reader with an opportunity to build a clear understanding of a
relatively small number of ideas and concepts from the calculus of functions of one
variable. It offers exhaustive discussions and carefully crafted examples; clear and
crisp statements of theorems and definitions; and—acknowledging that many of us are
visual learners—numerous illustrations, graphs, and diagrams. Important concepts are
revisited as often as possible, placed in a variety of contexts, and applied in solving
life sciences problems.

Development of Mathematical (Quantitative) Skills
It is impossible to fully master almost any topic in mathematics without adequate
skills in symbolic (algebraic) manipulation. This book contains a large number of fully
solved examples designed to illustrate formulas, algebraic methods, and algorithms,
and to provide an ideal opportunity for students to improve on their routine in the
technical intricacies of calculations.

Topics that some students may find challenging (such as Riemann sums and inte-
gration methods, working with Taylor polynomials, and graphing using leading
behaviour) are accompanied by a large number of solved examples. Use of technology
(graphing calculator or mathematical software such as Maple) is strongly encouraged,
since it might provide insights that will enhance understanding of the material.

In-Depth Explorations of Particular Models
This book includes several extended applications. Early on, we study the phenomenon
of the interaction between two types of bacteria, mutant and wild, in Section 3.4, and
certain aspects of the dynamics of gas exchange in the lungs, in Section 3.5. Appli-
cations of optimization to feeding patterns of animals, calculations of the strength of
bones, and a study of the ways bees build their honeycombs are found in Chapter 6.
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Preface xiii

Phase-plane methods are used in Chapter 8 to analyze two-dimensional systems rep-
resenting interactions between two species. Some of these models can be assigned as
individual or group study projects.

End-of-Section and End-of-Chapter Problems, Computer
Exercises, and Projects
In addition to routine skills problems, each section includes a wide variety of mod-
elling problems to emphasize consistently the importance of interpretation. As well,
more challenging mathematics questions will be found here, including requests to con-
struct proofs that are omitted from the text. Each chapter includes supplementary prob-
lems that introduce a variety of new applications and can be used for review or practice
sessions.

The book contains more than 50 exercises designed to be explored on a graphing
calculator (preferably programmable) or on a computer using software such as Maple.
These exercises emphasize visualization, experimentation, and simulation—all of which
are important aspects of conducting research in life sciences, as well as many other
areas.

Most chapters include projects suitable for individual or group exploration. Exam-
ples include the following:

■ modelling the balance between selection and mutation (Chapter 3)

■ studying periodic hematopoiesis using a discrete-time dynamical system
(Chapter 4)

■ experimenting with different numerical schemes for solving differential
equations (Chapter 7)

■ carefully studying models of adaptation by cells (Chapter 8)

Teaching
Although this is a book for life sciences, it is a calculus textbook as well. It can be
used to teach a variety of courses, spanning a wide range of flavours and levels of
difficulty. The coverage of math theory, techniques, and algorithms, as well as applica-
tions, allows an instructor to tune the course to an appropriate balance of math rigour
and applications in life sciences.

Several suggestions for courses are outlined in the chart on page xiv.
Great care has been taken to make the level of exposition—both mathematical and

applications—adequate for first-year students. A course instructor can assign, with
confidence, parts of the material as homework or as optional reading.

No matter which course is taught from this text, the benefits are obvious. The mod-
elling approach is naturally a problem-solving approach. Students will not remember
every technique they have learned. This book emphasizes understanding what a model
is and recognizing what a model says. To be able to recognize a differential equation,
interpret the terms, and use the solution is far more important than knowing how to
find a solution algebraically. These reasoning skills, in addition to familiarity with the
models in general, are what will stay with the motivated student and what will matter
most in the end.
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xiv Preface

Suggestions for Courses

One-semester, first-year
calculus for life sciences

Start with Chapter 1 (introduce the subject, justify using math to model life sciences phenomena, warm-
up); Chapter 2 (review linear, power, and transcendental functions, discuss numerous models); Chapter 4;
Chapter 5 (might not require much time); Chapter 6 (pick among the topics and applications presented);
Chapter 7 (selection of topics and applications); if time permits, discuss Section 8.1.

Discrete-time dynamical systems (in this context, recurrence relations) in Chapter 3 can be skipped,
or covered to a desired depth. For instance: extract basics from Sections 3.1 and 3.2 to cover models in
Section 3.3 (such as limited population or alcohol consumption), or cover Sections 3.1 and 3.2 in detail,
discuss many interesting models in Sections 3.3 and 3.4, and then discuss stability and further models in
Sections 6.7 and 6.8.

One-semester, first-year
calculus for life sciences
(advanced)

Taking advantage of students’ background, discuss features of models in Chapters 1, 2, and 3, perhaps
including Section 3.5; Chapters 4 and 5 might not require much time; possibly include case studies in
Section 6.2, or discussion of stability of equilibria and dynamics of chaos in Sections 6.7 and 6.8; cover
Chapter 7 and the first four sections of Chapter 8.

Two-semester, first-year
calculus for life sciences

First semester as above. Use the opportunity to finish the material in Chapters 7 and 8 to a desired depth.
The remaining time could be spent discussing topics from one or more of the Modules: Several Variables,
Probability and Statistics, and Linear Algebra, which are available as separate books (see page xv for a
Table of Contents of each module).

One-semester calculus
course of a more
theoretical nature

Start with Chapters 1 and 2 (to review properties of elementary functions; some applications can be used to
discuss properties of functions that involve parameters); Chapter 4 and Chapter 5, including some proofs;
Chapter 6, at least Sections 6.1 and 6.3; Chapter 7 (with details regarding Riemann sums); if time permits,
Sections 8.1 to 8.3.

Second-year modelling
course for students who
took traditional calculus

Focus on models in Chapters 1 and 2 (also a good review of functions); Chapter 3, perhaps all of it;
pick themes from Chapters 4 and 5 (for instance, absorption functions in Section 4.3 or related rates with
life sciences context in Section 5.5); cover Section 5.7; selection of material from Chapter 6, such as
Sections 6.2, 6.7, and 6.8; focus on applications in Chapter 7 (Section 7.6); Chapter 8, including systems
of autonomous differential equations. Sections 3.5, 6.9, and 8.8 contain some challenging material but are
appropriate for second-year students.

One-semester
introductory course on
dynamics of growth,
or population
modelling

Start with a selection of topics in Chapter 2 (exponential model, allometry); then Chapter 3, in partic-
ular Sections 3.3 and 3.4, with application exercises and computer exercises in Section 3.4 introducing
additional models, including chaotic behaviour; necessary topics in Chapters 4 and 5, using models as
examples (logistic, gamma distributions, Hill functions, von Bertalanffy limited growth, etc.); Sections
6.7, 6.8 (exercises in these two sections and projects at the end of the chapter provide many opportunities
for extensions [chaos, Ricker model, etc.]); Chapter 7; major focus on autonomous differential equations,
systems, and phase planes in Chapter 8.

Project-driven,
problem-based course
(learning math through
applications)

Consider questions such as the following: Why can’t we use radiocarbon dating to determine the time
when dinosaurs died (Section 2.2)? What happens to the amount of alcohol in our body if we consume one
drink per hour (Section 3.3)? How do bones grow and what makes them strong (Sections 2.1 and 6.2)?
Why do bees’ honeycombs have hexagonal cross-sections (Section 6.2)? How do we approximate the area
of a lake, or the volume of a heart chamber (Section 7.6)? How do we model interactions of two species
(Sections 8.5, 8.6, 8.7)? This is just a sample of starting points suggested in this book—students realize
that they need to learn more math if they wish to understand these life sciences problems and find good
answers.

Life Sciences Modules to Accompany This Text
This book covers the calculus of functions of one variable. Quite often, longer (two-
semester) life sciences courses include topics from other disciplines. To allow for flex-
ibility in planning courses and resources, additional material has been organized in
three separate modules. Intertwining math foundations and applications, the modules
cover functions of several variables, basics of probability and statistics, and elementary
linear algebra. These modules can be bundled with the text, or alternatively, a custom
package can be compiled, including material from the textbook and the modules. Con-
tact your sales representative for more information.
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Functions of Several Variables (144 pages), ISBN: 978-0-17-657136-8

1. Introduction
2. Graph of a Function of Several Variables
3. Limits and Continuity
4. Partial Derivatives
5. Tangent Plane, Linearization, and Differentiability
6. The Chain Rule
7. Second-Order Partial Derivatives and Applications
8. Partial Differential Equations
9. Directional Derivative and Gradient

10. Extreme Values
11. Optimization with Constraints

Probability and Statistics (195 pages), ISBN: 978-0-17-657135-1

1. Introduction: Why Probability and Statistics
2. Stochastic Models
3. Basics of Probability Theory
4. Conditional Probability and the Law of Total Probability
5. Independence
6. Discrete Random Variables
7. The Mean, the Median, and the Mode
8. The Spread of a Distribution
9. Joint Distributions

10. The Binomial Distribution
11. The Multinomial and the Geometric Distributions
12. The Poisson Distribution
13. Continuous Random Variables
14. The Normal Distribution
15. The Uniform and the Exponential Distributions

Linear Algebra (138 pages), ISBN: 978-0-17-657137-5

1. Identifying Location in a Plane and in Space
2. Vectors
3. The Dot Product
4. Equations of Lines and Planes
5. Systems of Linear Equations
6. Gaussian Elimination
7. Linear Systems in Medical Imaging
8. Matrices
9. Matrices and Linear Systems

10. Linear Transformations
11. Eigenvalues and Eigenvectors
12. The Leslie Model: Age-Structured Population Dynamics

About the Nelson Education Teaching Advantage (NETA)

The Nelson Education Teaching Advantage (NETA) program delivers research-
based instructor resources that promote student engagement and higher-order thinking
to enable the success of Canadian students and educators. To ensure the high quality
of these materials, all Nelson ancillaries have been professionally copy-edited.

Be sure to visit Nelson Education’s Inspired Instruction website at http://www.
nelson.com/inspired/ to find out more about NETA. Don’t miss the testimonials of
instructors who have used NETA supplements and seen student engagement increase!
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xvi Preface

Assessing Your Students: NETA Assessment relates to testing materials. NETA
Test Bank authors create multiple-choice questions that reflect research-based best
practices for constructing effective questions and testing not just recall but also higher-
order thinking. Our guidelines were developed by David DiBattista, psychology pro-
fessor at Brock University and 3M National Teaching Fellow, whose research has
focused on multiple-choice testing. All Test Bank authors receive training, as do the
copy-editors assigned to each Test Bank. A copy of Multiple Choice Tests: Getting
Beyond Remembering, Prof. DiBattista’s guide to writing effective tests, is included
with every Nelson Test Bank.

Technology in Teaching: NETA Digital is a framework based on Arthur
Chickering and Zelda Gamson’s seminal work “Seven Principles of Good Practice In
Undergraduate Education” (AAHE Bulletin, 1987) and the follow-up work by Chick-
ering and Stephen C. Ehrmann, “Implementing the Seven Principles: Technology as
Lever” (AAHE Bulletin, 1996). This aspect of the NETA program guides the writing
and development of our digital products to ensure that they appropriately reflect the
core goals of contact, collaboration, multimodal learning, time on task, prompt feed-
back, active learning, and high expectations. The resulting focus on pedagogical utility,
rather than technological wizardry, ensures that all of our technology supports better
outcomes for students.

Instructor Resources

All NETA and other key instructor ancillaries are provided on the Instructor’s
Resources Companion Site at www.nelson.com/site/calculusforlifesciences, giving
instructors the ultimate tool for customizing lectures and presentations.

NETA Test Bank: This resource was written by Andrijana Burazin and reviewed
by Miroslav Lovrić, McMaster University. It includes more than 275 multiple-choice
questions written according to NETA guidelines for effective construction and devel-
opment of higher-order questions. The Test Bank was copy-edited by a NETA-trained
editor and underwent a full technical check. Also included are almost 100 true/false
questions.

The NETA Test Bank is available in a new, cloud-based platform. Testing Pow-
ered by Cognero® is a secure online testing system that allows you to author, edit, and
manage test bank content from any place you have Internet access. No special installa-
tions or downloads are needed, and the desktop-inspired interface, with its drop-down
menus and familiar, intuitive tools, allows you to create and manage tests with ease.
You can create multiple test versions in an instant, and import or export content into
other systems. Tests can be delivered from your learning management system, your
classroom, or wherever you want.

Instructor’s Solutions Manual: This manual contains complete worked solutions
to exercises in the text. Prepared by text author Miroslav Lovrić, McMaster University,
it has been independently checked for accuracy by Caroline Purdy, University of New
Brunswick.

Image Library: This resource consists of digital copies of figures, short tables,
and graphs used in the book. Instructors may use these jpegs to create their own Pow-
erPoint presentations.

DayOne: Day One—Prof InClass is a PowerPoint presentation that instructors can
customize to orient students to the class and their text at the beginning of the course.

Enhanced WebAssign Cengage Learning’s Enhanced WebAssign™, the leading
homework system for math and science, has been used by more than 2.2 million stu-
dents. Created by instructors for instructors, EWA is easy to use and works with all
major operating systems and browsers. EWA adds interactive features to go far beyond
simply duplicating text problems online. Students can watch solution videos, see prob-
lems solved step by step, and receive feedback as they complete their homework.
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Enhanced WebAssign™ allows instructors to easily assign, collect, grade, and
record homework assignments via the Internet. This proven and reliable homework
system uses pedagogy and content from Nelson Education’s best-selling Calculus text-
books, then enhances it to help students visualize the problem-solving process and
reinforce concepts more effectively. EWA encourages active learning and time on task
and respects diverse ways of learning.

Visit www.cengage.com/ewa for more information and to access EWA today!

Student Ancillaries

Student Solutions Manual
The Student Solutions Manual contains detailed worked solutions to the odd-numbered
exercises in the book. It was prepared by Miroslav Lovrić, McMaster University, and
technically checked by Caroline Purdy, University of New Brunswick.

Enhanced WebAssign
Cengage Learning’s Enhanced WebAssign™ is a groundbreaking homework man-
agement system that combines our exceptional Calculus content with the most flexible
online homework solution. EWA will engage you with immediate feedback, rich tuto-
rial content, and interactive features that go far beyond simply duplicating text prob-
lems online. Visit www.cengage.com/ewa for more information and to access EWA
today!

Companion Website
Access additional material, including online-only advanced material not included in
the text, in the Companion Website for Calculus for the Life Sciences. Visit www.
nelson.com/site/calculusforlifesciences.com.
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Chapter

1
Introduction to Models and
Functions

iLexx/iStockphoto.com

T his chapter opens by answering an obvious and easy question—why do we
need mathematics in the life sciences? We list some (of many!) questions
from biology, health sciences, and elsewhere that are answered—using

mathematics—in this book. As well, we mention a few present-day research problems
that have very little chance of being solved or fully understood without mathematics.

We introduce the main tools needed to study biology using mathematics: models
and functions. A model is a collection of mathematical objects (such as functions and
equations) that allows us to interpret biological problems in the language of mathe-
matics. Biological phenomena are often described by measurements: a set of numeric
values with units (such as kilograms or metres). Many relations between measurements
are described by functions, which assign to each input value a unique output value.

After talking about what constitutes a mathematical model and presenting a few
examples, we briefly review functions and their properties. In this chapter, we dis-
cuss the domain and range and the graph of a function, algebraic operations with
functions, composition of functions, and inverse functions. We build new functions
from old using shifting, scaling, and reflections. We catalogue important elementary
functions and note their properties. The reader who is familiar with functions might
skip this material and move to the next chapter.

We introduce the four approaches—algebraic, numeric, geometric, and verbal—
that we use throughout the book to discuss functions, their properties, and their
applications.

In the last section we discuss aspects of logical reasoning that we need to follow
and to understand mathematical expositions. As well, we contrast the language used
in mathematics and in the life sciences, in order to motivate learning an important
skill—communicating scientific facts, ideas, and results across disciplines.

1.1 Why Mathematics Matters

In the summer of 2012, a team of palaeontologists from the Royal Tyrrell Museum
(“Canada’s dinosaur museum”) in Drumheller, Alberta, unearthed the skeleton of a
large triceratops, a herbivorous dinosaur that lived in what is now North America some
time between 68 and 65 million years ago. An adult triceratops measured
8–9 m in length and about 3 m in height, and weighed between 6,000 and 12,000 kg
(Figure 1.1.1).

FIGURE 1.1.1

Complete skeleton of a triceratops,
Royal Tyrrell Museum
Photo courtesy of the Royal Tyrrell
Museum, Drumheller, Alberta

No human has ever seen a living dinosaur, so how do we know all this?
Estimates of age, size, weight, and many other quantities are obtained using math-

ematics, based on the data collected from the bones and from the site where they
were found. Among other techniques, potassium-argon dating (see the note following
Example 2.2.13) is used to compute the time interval when triceratops lived on Earth.
By counting the growth lines in the MRI scan of certain bones (unlike an X-ray, an
MRI image is calculated), researchers can determine how old the dinosaur was when
it died. Then, using the formula (adapted from G. M. Erickson, K. C. Rogers, and
S. A. Yerby, Dinosaurian growth patterns and rapid avian growth rates. Nature, 412
(429–433), 2001)
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2 Chapter 1 Introduction to Models and Functions

M =
12, 000

1 + 2.9e−0.87(t−7.24)
(1.1.1)

we can find an approximation of the body mass, M (in kilograms), of the triceratops
based on the age at death, t (in years).

Allometry—a branch of life sciences—is the study of numeric relationships
between quantities associated with human or animal organisms. For instance, the allo-
metric formula (adapted from M. Benton, and D. Harper, Basic Palaeontology, Harlow,
U.K.: Addison Wesley Longman, 1997)

Sk = 0.49Sp0.84 (1.1.2)

relates the skull length, Sk, of a larger dinosaur to its spine length, Sp (both measured
in metres). From the triceratops’ vertebrae found at the Drumheller site, researchers
could figure out its spine length and then use formula (1.1.2) to calculate the size of its
skull. (Further examples of allometric relationships can be found in Examples 2.1.12
to 2.1.16 and Example 5.5.10.)

This example, and many more that we will encounter in this book, echo this
important message:

Mathematics is an indispensable tool for studying life sciences. It deepens our understanding
of life science phenomena and helps us to figure out the answers to questions that would
otherwise be hard (or impossible) to find.

To further emphasize this message, we give a sample of questions that we will dis-
cuss and answer—using mathematics—in this book. Needless to say, we view math-
ematics in its broadest sense, i.e., including probability, statistics, numeric techniques
and simulations, and computer programming.

■ My body mass index is 27 (above normal range). How much weight should I
lose to lower it to 24 (healthy weight)? My body mass index is 16 (below normal
range). How much weight should I gain to bring it to 18 (healthy weight)? (See
Example 2.1.11.)

■ According to the Statistics Canada 2011 Census, about 33.5 million people lived
in Canada in May 2011 (exactly 33,476,688 people were enumerated in the
census). How many people will live in Canada in 2021? (See Examples 2.1.10
and 2.2.14.)

■ If a student consumes one alcoholic drink (12 oz of beer, or 5 oz of white wine,
or 1.5 oz of tequila or vodka) every hour, how much alcohol will be in that
student’s body after five hours? How long will it take the student to sober up?
(See Section 3.3, in particular Examples 3.3.6–3.3.8.)

■ How do forensic pathologists identify the location of impact (say, from a bullet)
by analyzing blood splatters on the floor? (Read Example 2.3.15.)

■ Which part of a skeleton grows faster: the skull or the spine? (See
Example 5.5.10.)

■ What is the surface area of Lake Ontario? (This information is needed, for
instance, when scientists study the impact of pollutants on lake fauna; see
Example 7.6.6.)

■ Scientists believe that the fossils found in the Burgess Shale Formation in British
Columbia are about 505 million years old. The Joggins Fossil Cliffs in Nova
Scotia contain fossils from the so-called coal age of Earth’s history, about 310
million years ago. How were these estimates obtained? A tree trunk (Figure 1.1.2)
was unearthed near the city of Kaitaia in New Zealand. How long ago did the
tree die? (See the note following Example 2.2.13.)

FIGURE 1.1.2

Ancient kauri tree trunk (unearthed and
placed upright for display)
Miroslav Lovric
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1.1 Why Mathematics Matters 3

■ An MRI (magnetic resonance imaging) scan shows that a smaller blood vessel
branches off the right coronary artery at an angle of 50 degrees. Is there a reason
for medical concern? (Read Example 6.1.18.)

■ Long bones in mammals (such as the femur) are hollow, filled with blood cell–
producing marrow. Although lightweight, they are strong enough to support the
entire body, enabling it to move in various ways. However, under continuous
stress (often identified in athletes) or due to an acute event (such as a fall or
a car crash), a femur can break. Can we somehow grow a stronger femur by
making its walls thicker? (See Section 6.2.)

■ How much valuable time is saved if a breast cancer is detected in a mammogram
compared to a clinical breast examination detection? (See Example 2.2.15.)

Formulas (1.1.1) and (1.1.2), which describe life science quantities and pheno-
mena using mathematical objects (in this case formulas involving exponential and
power functions) are said to constitute a mathematical model (or just a model, as
is common in practice). For instance, formula (1.1.1) models the relationship between
age at death and body mass for larger dinosaurs. Formula (1.1.2) is a model for a rela-
tionship between skull length and spine length for large dinosaurs. We will say more
about models in the next section.

In this book we study numerous ways of describing how populations (of cells,
bacteria, animals, or humans) change. The simplest model, which uses elementary
mathematics, assumes that the birth and the death rates are constant. If the birth rate
is larger than the death rate, the model implies that the population will grow exponen-
tially. Of course, beyond a certain point, this is neither realistic nor possible for any
population.

To make this model better mimic reality, we introduce various modifications: for
instance, we can make the birth and the death rates change over time, we can include
the carrying capacity (carrying capacity is the largest number of individuals that can
live in an ecosystem), or we might need to include a term that accounts for the min-
imum number of individuals needed for the population to avoid extinction. Having
made some or all of these modifications to our model, we realize that we need to know
more mathematics in order to work with it.

This is not all—we might need to add terms that account for harvesting and sea-
sonal changes in the population size. As well, it might be necessary to include the
effects of a disease, a natural disaster, or another random event that might affect the
population. For all this, we need to know even more mathematics. Hence another
important message:

As the model—the description of a life sciences phenomenon using mathematics—moves
closer to reality, it also becomes more complex, and more mathematics is needed to work
with it.

In other words, as we learn more math, we are able to probe deeper into a pro-
blem, understand it better, gain new insights, and obtain more meaningful results and
answers. To further stimulate interest in studying life sciences and mathematics
together, we list several problems that are the topics of present research:

■ What are the risks to the indigenous fish populations in the Great Lakes from
the new species of fish brought in the tanks of large cargo ships?

■ What are the distinct features of the trafficking of eosinophils as they migrate
from bone marrow to the blood and, ultimately, to the lungs? How can this
enhance our understanding of certain aspects of the development of allergic
asthma? (Eosinophils are white blood cells, important components of our
immune system, defending it against parasites and certain infections. Allergic
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4 Chapter 1 Introduction to Models and Functions

asthma is a disease of the airways that develops as a consequence of an immune-
inflammatory response to allergen exposure (such as dust, pollen, or various
drugs), causing inflammation in the lungs.)

■ According to the Director of Biodiversity Programs at the Royal Botanical Gar-
dens (RBG) in Hamilton, Ontario, there is a need to cut “an apparent overpop-
ulation of deer wintering on its lands.” An aerial survey of the part of the RBG
lands in 2010 identified 267 deer, which is deemed (by the Ontario Ministry of
Natural Resources) to be six to nine times the desired number of deer in the area.
Is the ministry right? What is the carrying capacity of the RBG lands, i.e., how
many deer should be removed (culled or relocated) from there?

■ Due to long exposures to zero or near-zero gravity, astronauts working in the
International Space Station suffer from spaceflight osteopenia (bone loss; on
average, they lose about 1% of their bone mass per month spent in space). On
the other hand, sea urchins are known to continue the production of calcium,
unaffected by the lack of gravity. By modelling the growth and development
of calcium plates in the skeletons of the urchins, researchers are trying to shed
more light on the dynamics of calcium recycling, hoping to reduce the effects of
osteopenia in humans.

■ In order to better understand the pathophysiology of hydrocephalus (potentially
brain-damaging buildup of fluid in the skull), researchers are studying the inter-
action between the cerebrospinal fluid and the brain tissue. Present efforts are
focused on using partial differential equations (we will study differential equa-
tions in this book) to gain new insights into this interaction.

Dear Student:
This book gives you an opportunity to learn mathematics and to see how it is

used in the wide spectrum of applications in the life sciences. To see applications
in action (and to get more from them!) you need to understand the underlying math
concepts, formulas, and algorithms. This is why you will find a large number of fully
solved examples, as well as exercises, ranging from easy and routine to more complex,
theoretical, and challenging. Work on as many of them as you can.

Learning mathematics is not easy. Like everything you really care for, it requires
seriousness, dedication, a significant amount of time, and lots of hard work. But in the
end, it will be worth it!

No subject teaches logical thinking, develops analytic and problem-solving skills, and
demonstrates how to deal with complex problems better or more effectively than math.

Have you ever wondered why math majors score at or near the top in all standard-
ized tests, including MCAT, GMAT, and LSAT?

1.2 Models in Life Sciences

Living systems, from cells to organisms to ecosystems, are characterized by change
and dynamics. Living things grow, maintain themselves, and reproduce. Even remai-
ning the same requires dynamical responses to a changing environment. Understanding
the mechanisms behind these dynamics and deducing their consequences is crucial to
understanding biology, biochemistry, ecology, epidemiology, physiology, population
genetics, and many other life sciences.

This dynamical approach is necessarily mathematical because describing dyn-
amics requires quantifying measurements. What is changing? How quickly is it chan-
ging? What is it changing into?
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1.2 Models in Life Sciences 5

In this book, we use the language of mathematics to describe quantitatively how
living systems work and to develop the mathematical tools needed to compute how
they change. From measurements describing the initial state of a system and a set of
rules describing how change occurs, we will attempt to predict what will happen to the
system.

For example, by knowing the initial amount of a drug taken (caffeine, Tylenol,
alcohol, etc.) and how it is processed by the liver or kidneys (dynamical rules), we
can predict how long the drug will stay in the body and what effects it might have.
By knowing how many elephants live in a certain area and quantifying the factors that
influence how they reproduce, we can predict what will happen to their population in
the future.

To study a life sciences phenomenon using mathematics, we build a model. How
does a model work?

First, we identify a problem we need to study, or a question we need to answer.
Assume that a virus (say, H1N1) appears within a population. Will the virus spread?
How many people will get infected? How many will die? Will our hospitals have
adequate resources to treat increasing numbers of patients? These are just a han-
dful of the questions that we would like to know the answers to. Underlying all of
them is the basic question: we know (approximately) how many people are infected
today. How many will be infected tomorrow? in three days? in a week? in a
month?

Next, we need to quantify the measurements that we will use to investigate the
problem. If we wish to use mathematics, we need numerical data. In our case, the basic
measurement is the number of people infected with the H1N1 virus at any given time.
Given the tools we have at our disposal, it is very useful to think of the number of
people infected as a function (dependent variable). We might wish to use a symbol
such as I(t) to denote that function and to say that we will investigate how it changes
with respect to time. As well, we have some data—we might know (or be able to esti-
mate) how many people are infected at the moment. This is called an initial condition;
we will denote it by I(0), relabelling the time so that time = zero corresponds to the
start of our investigation.

We also need to define the rules that govern the dynamics of the model. How
does I(t) change, and what affects it? What makes it grow, and what makes it decrease?
Because we are studying change, we need a mathematical tool that is designed to do
that—the derivative! That is why calculus is so relevant. If we wish to study change,
we must use calculus.

Using functions and derivatives, we translate data, observations, measurements,
and dynamic rules into formulas, equations, and whichever other mathematical tools
we think will be useful. Two tools to which we devote a large part of this book,
discrete-time dynamical systems and differential equations, are essential compo-
nents of many mathematical models.

By doing all this we have just built a model for the spread of a virus. Other
models are created in more or less the same way (Figure 1.2.3).

To obtain solution(s), we use a variety of mathematical techniques (differentia-
tion, integration, numerical algorithms, solving differential equations, limits of
sequences, etc.). In rare cases we obtain exact solutions; usually we can obtain an
approximation from an algorithm, a calculator, or a computer.

Finally, we interpret the mathematical results. Do they make sense? Do they
answer our question(s)? Do they help us better understand what is going on? Quite
often, the answer to these questions is not an enthusiastic yes, but we can usually say
yes to the following questions—can we get more out of this? can we do better? can we
make it more accurate? Thus, mathematical modelling is itself a dynamical process—
in light of new data that we might have obtained, or new developments or new insights,
we refine or modify our model and run it again, in hopes of obtaining better answers
and gaining a better understanding of the problem.
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Observation and
resulting questions

Quantify measurements
and dynamic rules

No
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Done!

Mathematical tools
• dynamical systems
• differential equations

Solution
• algebraic, numeric
• simulation

Interpretation
• solution makes sense?
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New insights, new data,
new developments,

new questionsFIGURE 1.2.3

Mathematical model

Example 1.2.1 Models for the Population of Canada

In Example 2.1.10 we ask the following question about the population of Canada:
based on the 2001 and 2006 Census data, what will the population be in 2011? (We
picked the year 2011 so that we can compare our results with the actual 2011 Census
data.)

We build a linear model (i.e., using a linear function) and solve it, obtaining the
estimate of 33,219,000 for the year 2011. Not finding the answer satisfactory (fol-
lowing the “No” direction in the flow chart in Figure 1.2.3), we decide to try another
model.

In Example 2.2.14 we use exponential growth as a model for the Canadian pop-
ulation, arriving at the estimate of 33,305,000. Comparing to the actual population
in 2011 (33,477,000), we see that the exponential model is a bit more accurate than
the linear model. However, since both models give underestimates of 170 thousand or
more, we find neither truly satisfactory.

So it is back to the drawing board—but we need to learn more mathematics. To
build richer, more appropriate models, we need to learn about derivatives, integrals,
and differential equations.

Example 1.2.2 Models of Malaria

Early in this century, Sir Ronald Ross discovered that malaria is transmitted by cer-
tain types of mosquitoes. Because the disease was (and remains) difficult to treat, one
promising strategy for control seemed to be reducing the number of mosquitoes. Many
people thought that all the mosquitoes would have to be killed to eradicate the disease.
Because killing every single mosquito was impossible, it was feared that malaria might
be impossible to control in this way.

Ross decided to use mathematics to convince people that mosquito control could
be effective. The problem can be formulated dynamically as a problem in population
growth. Ross knew that an uninfected person can become infected upon being bitten
by an infected mosquito and that an uninfected mosquito can be infected when it bites
an infected person (Figure 1.2.4). From these assumptions, he built a mathematical
model describing the population dynamics of malaria. With this model he proved that
the disease could be eradicated without killing every single mosquito. We see evidence
of this today in the United States, where malaria has been virtually eliminated even
though the mosquitoes capable of transmitting the disease persist in many regions.

Example 1.2.3 Models of Neurons

Neurons are cells that transmit information throughout the brain and body. Even the
simplest neuron faces a challenging task. It must be able to amplify an appropriate
incoming stimulus, transmit it to neighbouring neurons, and then turn off and be ready
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for the next stimulus. This task is not as simple as it might seem. If we imagine the
stimulus to be an input of electrical charge, a plausible rule is “If electrical charge
is raised above a certain level, increase it further.” Such a rule works well for the first
stimulus but provides no way for the cell to turn itself off. How does a neuron maintain
functionality?

In the early 1950s, Hodgkin and Huxley used their own measurements of neurons
to develop a mathematical model of dynamics to explain the behaviour of neurons.
The idea is that the neuron has fast and slow mechanisms to open and close special-
ized ion channels in response to electrical charge (Figure 1.2.5). Hodgkin and Huxley
measured the dynamical behaviour of these channels and showed mathematically that
their mechanism explained many aspects of the functioning of neurons. They received
the Nobel Prize in Physiology or Medicine for this work in 1963 and, perhaps even
more impressive, developed a model that is still used today to study neurons and other
types of cells.

Types of Dynamical Systems
Biological phenomena can be studied using three types of dynamical systems: discrete-
time, continuous-time, and probabilistic systems. The first two types, which are cov-
ered in this book, are deterministic, meaning that the dynamics include no chance
factors. In this case, the values of the basic measurements can be predicted exactly at
all future times. Probabilistic dynamical systems include chance factors, and values
can be predicted only on average. (We do not study probabilistic dynamical systems
in this book.)

Discrete-Time
Dynamical Systems

Discrete-time dynamical systems describe a sequence of measurements made at equally
spaced intervals (Figure 1.2.6). These dynamical systems are described mathemati-
cally by a rule that gives the value at one time as a function of the value at a previous
time. For example, a discrete-time dynamical system describing population growth is a
rule that gives the population in one year as a function of the population in the previous
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year. A discrete-time dynamical system describing the concentration of oxygen in the
lung is a rule that gives the concentration of oxygen in a lung after one breath as a func-
tion of the concentration after the previous breath. Mathematical analysis of the rule
can provide scientific predictions, such as the maximum population size or the average
concentration of oxygen in the lung. The study of these systems requires differential
calculus (Chapters 4, 5, and 6).

Continuous-Time
Dynamical Systems

Continuous-time dynamical systems, usually known as differential equations,
describe measurements that change continuously (Figure 1.2.7). A differential equa-
tion consists of a rule that gives the instantaneous rate of change of a set of mea-
surements. The beauty of differential equations is that information about a system at
one time is sufficient to predict the state of a system at all future times. For example, a
continuous-time dynamical system describing the growth of a population is a rule that
gives the rate of change of population size as a function of the population size itself.
The study of these systems requires the mathematical methods of integral calculus
(Chapters 7 and 8).

Quantifying
Measurements

If we wish to use mathematics, we need numbers—we have to quantify all data, mea-
surements, and relations between measurements that we plan to use.

In this book we work with the data provided and are not concerned about how they
were collected, nor do we worry about their accuracy or validity.

The most important thing about numbers is that we can compare them and draw
important conclusions from these comparisons. There are many possible relationships
between quantities; in Table 1.2.1 we list those most commonly used.

To describe the range of (real-number) values, we use inequalities or interval nota-
tion; see Table 1.2.2 (it is assumed that a < b).

Table 1.2.1

Symbol Relationship between Quantities, Meaning, and Example

A = B Quantities A and B are equal, for example, 1/2 = 0.5. In mathematics and
to mathematicians, this means that the quantities are absolutely ident-
ical. In most modelling examples, however, rarely (if ever) are two phe-
nomena equal or identical. Many times we use the equals sign when we
actually mean to say “approximately equal.”

A ≈ B A is approximately equal to B, as in π ≈ 3.14. The exact meaning of
“approximately equal” depends on the context (even within a context, its
meaning might not be fixed). Due to a measurement error, every instru-
ment we use returns an approximate (and not true) reading of the quan-
tity measured.

A �= B A and B are neither equal nor approximately equal.

A > B A is greater than B, or B is smaller than A.

A � B A is much greater than B, or B is much smaller than A. The effects of B
can be ignored; for instance, if A � B then A ± B ≈ A and B/A ≈ 0.

A ∝ B A is proportional to B; if B triples, so does A (we will discuss examples
in forthcoming sections).

A ∝ 1/B A is inversely proportional to B; if B doubles, then A halves (we will
discuss examples in forthcoming sections).

order of magnitude
(powers of 10)

One power of 10 is one order of magnitude. If A is about 10 times as
large as B, then A is larger by one order of magnitude. A is three orders
of magnitude larger than B if A is about a thousand times as large as B.
The mass of a dog is two orders of magnitude less than the mass of an
elephant.
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Table 1.2.2

Represents

Inequality All Real Numbers

Interval or Symbols Picture between a and b

(a, b) a < x < b
a b x excluding both a and b

(a, b] a < x ≤ b
a b x excluding a and including b

[a, b) a ≤ x < b
a b x including a and excluding b

[a, b] a ≤ x ≤ b
a b x including both a and b

Represents All Real Numbers

(a, ∞) x > a
a x greater than a

[a, ∞) x ≥ a
a x greater than or equal to a

(−∞, b) x < b
b x less than b

(−∞, b] x ≤ b
b x less than or equal to b

Represents

(−∞, ∞) R x all real numbers

The intervals (a, b), (a, ∞), and (−∞, b) are called open intervals, whereas
[a, b], [a, ∞), and (−∞, b] are closed intervals.

In many cases, we need to estimate the numbers that we need to use in our model.
For instance, it is difficult (in many cases impossible) to know exactly how many
bacteria are in a Petri dish, or exactly how many people are infected with a virus, or
exactly how much sodium enters a cell in an hour through the process of diffusion.

Example 1.2.4 Estimating the Number of Bacteria in a Petri Dish

Bacteria might be too small to count or, for other reasons, counting is dismissed (as
impractical or time-consuming or impossible). Here is one possible approach. We can
estimate the area that a colony of bacteria occupies in a Petri dish. Then, knowing how
thick the colony is, i.e., how many layers of bacteria there are, we can calculate the
volume occupied by the colony (volume = area times thickness).

The key measurement is density, in this case defined as

density =
number of bacteria

volume
If we know the density, then the formula

total number of bacteria = density × volume

approximates the total number of bacteria in the colony. Note that none of the numbers
involved in this calculation could possibly be exact.

Example 1.2.5 Counting Elephants

How many elephants are there in the Southern African highlands, a large ecosystem
that spans several countries? It is impossible to track down every elephant and come
up with an exact number.

What we can do is pick a small representative subregion of the whole region,
one that—in all significant ways—mimics the whole region. Using a variety of means
(air surveillance, acoustic monitoring, seismic sensors, etc.) we figure out how many
elephants are in that small subregion, and based on it compute the density

density =
number of elephants

area
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